We'd like your feedback
Your feedback is important to us. It will help us improve the quality of the study information on this site. Please answer both questions.
Contact the study team using the details below to take part. If there are no contact details below please ask your doctor in the first instance.
Thrombosis
This information is provided directly by researchers, and we recognise that it isn't always easy to understand. We are working with researchers to improve the accessibility of this information. In some summaries, you may come across links to external websites. These websites will have more information to help you better understand the study.
Left ventricular thrombus is a recognised complication of acute myocardial infarction, associated with stroke, recurrent myocardial infarction and adverse cardiac remodelling. The prevention, treatment and resolution of thrombus is hampered by a lack of understanding of its initiation, propagation and dissolution. Advanced non-invasive imaging holds major promise in improving our understanding of the incidence and the natural history of left ventricular thrombus as well as providing potential biomarkers to assess disease activity and treatment efficacy.
In this prospective observational study, the investigators will recruit patients with recent acute anterior myocardial infarction and screen them for evidence of left ventricular thrombus and subclinical stroke using hybrid positron emission tomography and magnetic resonance imaging (PET/MR). Each patient will undergo PET/MR of the heart and head 7±2 days after acute myocardial infarction. If left ventricular thrombus is present on baseline MR, patients will be started on anticoagulation at the discretion of the attending physician, who will determine the agent used (warfarin or direct oral anticoagulant) and the duration of therapy (3-6 months). Patients will then undergo repeat PET/MR at completion of anti-coagulant therapy and then again after another 3 months. Patients with increased 18F- GP1 activity but no overt thrombus on MR will undergo repeat PET/MR of the head and heart at 3 and 6 months to establish the natural history of this observation and its association with thromboembolism in the brain. They will not routinely receive anticoagulation given the exploratory nature of this study.
Start dates may differ between countries and research sites. The research team are responsible for keeping the information up-to-date.
The recruitment start and end dates are as follows:
"Wendelboe AM, Raskob GE. Global Burden of Thrombosis: Epidemiologic Aspects. Circ Res. 2016 Apr 29;118(9):1340-7. doi: 10.1161/CIRCRESAHA.115.306841."; "27126645"; "Jackson SP. The growing complexity of platelet aggregation. Blood. 2007 Jun 15;109(12):5087-95. doi: 10.1182/blood-2006-12-027698. Epub 2007 Feb 20."; "17311994"; "Turpie AG, Robinson JG, Doyle DJ, Mulji AS, Mishkel GJ, Sealey BJ, Cairns JA, Skingley L, Hirsh J, Gent M. Comparison of high-dose with low-dose subcutaneous heparin to prevent left ventricular mural thrombosis in patients with acute transmural anterior myocardial infarction. N Engl J Med. 1989 Feb 9;320(6):352-7. doi: 10.1056/NEJM198902093200604."; "2643772"; "Gianstefani S, Douiri A, Delithanasis I, Rogers T, Sen A, Kalra S, Charangwa L, Reiken J, Monaghan M, MacCarthy P. Incidence and predictors of early left ventricular thrombus after ST-elevation myocardial infarction in the contemporary era of primary percutaneous coronary intervention. Am J Cardiol. 2014 Apr 1;113(7):1111-6. doi: 10.1016/j.amjcard.2013.12.015. Epub 2014 Jan 14."; "24485697"; "Kalra A, Jang IK. Prevalence of early left ventricular thrombus after primary coronary intervention for acute myocardial infarction. J Thromb Thrombolysis. 2000 Oct;10(2):133-6. doi: 10.1023/a:1018710425817."; "11005935"; "Nayak D, Aronow WS, Sukhija R, McClung JA, Monsen CE, Belkin RN. Comparison of frequency of left ventricular thrombi in patients with anterior wall versus non-anterior wall acute myocardial infarction treated with antithrombotic and antiplatelet therapy with or without coronary revascularization. Am J Cardiol. 2004 Jun 15;93(12):1529-30. doi: 10.1016/j.amjcard.2004.02.066."; "15194027"; "Velangi PS, Choo C, Chen KA, Kazmirczak F, Nijjar PS, Farzaneh-Far A, Okasha O, Akcakaya M, Weinsaft JW, Shenoy C. Long-Term Embolic Outcomes After Detection of Left Ventricular Thrombus by Late Gadolinium Enhancement Cardiovascular Magnetic Resonance Imaging: A Matched Cohort Study. Circ Cardiovasc Imaging. 2019 Nov;12(11):e009723. doi: 10.1161/CIRCIMAGING.119.009723. Epub 2019 Nov 11."; "31707810"; "Andrews JPM, MacNaught G, Moss AJ, Doris MK, Pawade T, Adamson PD, van Beek EJR, Lucatelli C, Lassen ML, Robson PM, Fayad ZA, Kwiecinski J, Slomka PJ, Berman DS, Newby DE, Dweck MR. Cardiovascular 18F-fluoride positron emission tomography-magnetic resonance imaging: A comparison study. J Nucl Cardiol. 2021 Oct;28(5):1-12. doi: 10.1007/s12350-019-01962-y. Epub 2019 Dec 2."; "31792913"; "Lohrke J, Siebeneicher H, Berger M, Reinhardt M, Berndt M, Mueller A, Zerna M, Koglin N, Oden F, Bauser M, Friebe M, Dinkelborg LM, Huetter J, Stephens AW. 18F-GP1, a Novel PET Tracer Designed for High-Sensitivity, Low-Background Detection of Thrombi. J Nucl Med. 2017 Jul;58(7):1094-1099. doi: 10.2967/jnumed.116.188896. Epub 2017 Mar 16."; "28302764"
You can take part if:
You may not be able to take part if:
This is in the inclusion criteria above
Below are the locations for where you can take part in the trial. Please note that not all sites may be open.
Evangelos Tzolos, MD
07412959799
Evan.tzolos@gmail.com
The study is sponsored by University of Edinburgh and is in collaboration with NHS Lothian.
Your feedback is important to us. It will help us improve the quality of the study information on this site. Please answer both questions.
You can print or share the study information with your GP/healthcare provider or contact the research team directly.